Analisis Jaringan Komunikasi #Pilpres2024 Pada Platform Twitter

Alicia Laurence Efendi, Amira Fadilla, Arshilla Citra Khoirunnisa, Gema Nusantara Bakry, Nindi Aristi

Abstract


Toward the general election in 2024, discussions and political polemics in Indonesia are increasingly heated. This is also discussed through social media platforms, especially Twitter, which disseminates information widely and quickly so that more and more people know this information and share their opinions associated with the hashtag #Pilpres2024. This study aims to analyze the relations between actors (nodes) and social networks in terms of types of relationships, patterns of relations, and network relations of communication between actors, which are formed from the hashtag #Pilpres2024 from public participation on Twitter. This study uses the theory that is mostly used for network research, namely Graph Theory. The results of the research show that the social network design that is formed is the complete network design with 581 nodes and 320 edges. The type of relationship that is formed is a two-mode relationship type with a wheel communication pattern and a chain communication pattern. The communication network formed is directed and asymmetric. Based on the visualization results of this research, it can be concluded that the message can be conveyed effectively through the help of Twitter social media because it is carried out by various actors in it.


Keywords


Election; Social Network; Twitter; Actor Centrality; President

Full Text:

PDF

References


Aisyah, P. N., Bakry, G. N., & Sjafirah, N. A. (2022). Analisis Jejaring Sosial Peran Pers dalam Penyebaran Informasi Terkait Kebijakan PPKM. Jurnal Komunikasi Global, 11(1), 43–65. https://doi.org/10.24815/jkg.v11i1.24555

Akbar, M. A., Masniarara Aziza Balfas Amril, Raiza Syahira, Fahrein Rachel Latisha, & Noor Jihan. (2022). ANALISIS STRUKTUR JARINGAN KOMUNIKASI #SEAGAMES2022 DI TWITTER MENGGUNAKAN PENDEKATAN SOCIAL NETWORK ANALYSIS (SNA). Jurnal Studi Komunikasi dan Media, 26(1), 1–16. https://doi.org/10.17933/jskm.2022.4780

Al Majid, A. R., & Nugroho, W. (2022). ANALISIS JARINGAN KOMUNIKASI OPINI PUBLIK PADA FENOMENA “PEMECATAN Dr TERAWAN” DI TWITTER. WACANA: Jurnal Ilmiah Ilmu Komunikasi, 21(2), 336–345. https://doi.org/10.32509/wacana.v21i2.2192

Azeharie, S., & Kusuma, O. (2014). ANALISIS PENGGUNAAN TWITTER SEBAGAI MEDIA KOMUNIKASI SELEBRITIS DI JAKARTA. Jurnal Komunikasi Universitas Tarumanegara, VI(2), 83–98.

Bakry, G. N. (2020). Struktur Jaringan Pengguna Twitter dengan Tagar #Bandunglawancovid19. Jurnal Komunikasi Global, 9(2), 209–229. https://doi.org/10.24815/jkg.v9i2.17478

Bakry, G. N., & Kusmayadi, I. M. (2021). Peran Pers Sebagai Aktor Gerakan Digital Tagar #SolidaritasUntukNTT di Twitter. Jurnal Kajian Jurnalisme, 5(1), 98–114. https://doi.org/10.24198/jkj.v5i1.33458

Bratawisnu, M. K., & Alamsyah, A. (2018). SOCIAL NETWORK ANALYSIS UNTUK ANALISA INTERAKSI USER DIMEDIA SOSIAL MENGENAI BISNIS E-COMMERCE (STUDI KASUS: LAZADA, TOKOPEDIA DAN ELEVENIA). 2.

Bruns, A., & Burgess, J. (2011). New Methodologies for Researching News Discussion on Twitter. The Future of Journalism, 3, 1–13.

Bruns, A., & Highfield, T. (2012). Blogs, Twitter, and breaking news: The produsage of citizen journalism. Produsing Theory in a Digital World: The Intersection of Audiences and Production in Contemporary Theory, 80, 15–32.

Chakraborty, A., Dutta, T., Mondal, S., & Nath, A. (2018). Application of Graph Theory in Social Media. International Journal of Computer Sciences and Engineering, 6(10), 722–729. https://doi.org/10.26438/ijcse/v6i10.722729

Cody, E. M., Reagan, A. J., Mitchell, L., Dodds, P. S., & Danforth, C. M. (2015). Climate Change Sentiment on Twitter: An Unsolicited Public Opinion Poll. PLOS ONE, 10(8), e0136092. https://doi.org/10.1371/journal.pone.0136092

Conway, B. A., Kenski, K., & Wang, D. (2015). The Rise of Twitter in the Political Campaign: Searching for Intermedia Agenda-Setting Effects in the Presidential Primary. Journal of Computer-Mediated Communication, 20(4), 363–380. https://doi.org/10.1111/jcc4.12124

Damanik, E. L. (2018). Hashtag #2019GantiPresiden: Sentimen Anti-petahana dan Orientasi Politik Pemilih Pemula menghadapi Pilpres 2019 di Pematangsiantar. JPPUMA Jurnal Ilmu Pemerintahan dan Sosial Politik Universitas Medan Area, 6(2), 166. https://doi.org/10.31289/jppuma.v6i2.1996

Deen, A., & Pan, P.-L. (2022). Exploring Social Networks of #Election2020results and #BidenTransition on Twitter after the 2020 US Presidential Election. The Journal of Social Media in Society, 11(2), 77–96.

Deliar, A. A., Liviani, M., Az-Zahra, M. F. Z., & Aura, R. S. (2022). Analisis Jaringan dan Aktor #Jokowi3Periode di Media Sosial Twitter Menggunakan Social Network Analysis. JCOMMSCI, 5(3), 154–169.

Eriyanto, E. (2019). Hashtags and Digital Movement of Opinion Mobilization: A Social Network Analysis/SNA Study on #BubarkanKPAI vs #KamiBersamaKPAI Hashtags. Jurnal Komunikasi Indonesia, 8(3), 167–178. https://doi.org/10.7454/jki.v8i3.11591

Farzam, A., Moradi, P., Mohammadi, S., Padar, Z., & Siegel, A. A. (2022). Opinion manipulation on Farsi Twitter. Scientific Reports, 13(1), 1–18. https://doi.org/10.1038/s41598-022-26921-5

Febrianti, I., Anam, M. K., Rahmiati, R., & Tashid, T. (2020). Tren Milenial Memilih Jurusan Di Perguruan Tinggi Menggunakan Metode Social Network Analysis. Techno.Com, 19(3), 216–226. https://doi.org/10.33633/tc.v19i3.3483

Gruzd, A., Wellman, B., & Takhteyev, Y. (2011). Imagining Twitter as an Imagined Community. American Behavioral Scientist, 55(10), 1294–1318. https://doi.org/10.1177/0002764211409378

He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472. https://doi.org/10.1016/j.ijinfomgt.2013.01.001

Hertanto, D., Sugiyanto, S., & Safitri, R. (2016). Analisis Struktur Jaringan Komunikasi dan Peran Aktor Dalam Penerapan Teknologi Budidaya Kentang (Petani Kentang Desa Ngantru Kecamatan Ngantang Kabupaten Malang). HABITAT, 27(2), 55–65. https://doi.org/10.21776/ub.habitat.2016.027.2.7

Iacobucci, D., Popovich, D. L., McBride, R., & Rouziou, M. (2017). In Social Network Analysis, Which Centrality Index Should I Use?: Theoretical Differences and Empirical Similarities among Top Centralities. Journal of Methods and Measurement in the Social Sciences, 8(2), 72–99.

Karami, A., Bernnett, L. S., & He, X. (2012). Mining Public Opinion about Economic Issues: Twitter and the U.S. Presidential Election.

Khairiza, F., & Kusumasari, B. (2020). Analyzing Political Marketing in Indonesia: A Palm Oil Digital Campaign Case Study. Forest and Society, 4(2), 294–309. https://doi.org/10.24259/fs.v4i2.9576

Kim, D. (2018). A study on the influence of Korean Middle School students’ relationship through Science class applying STAD cooperative learning. Journal of Technology and Science Education, 8(4), 291–309. https://doi.org/10.3926/jotse.407

Mardhiyyah Soenar, H. & Nurrahmawati. (2021). Analisis Jaringan Komunikasi dan Eksistensi dalam Komunitas X Kota Bandung. Jurnal Riset Public Relations, 1(2), 96–103. https://doi.org/10.29313/jrpr.v1i2.399

Mendrofa, A. J., & Syafii, M. (2019). POLA KOMUNIKASI ORGANISASI DALAM MENINGKATKAN EKSISTENSI KOMUNITAS MARGA PARNA DI KOTA BATAM ( Studi Kasus Komunitas Marga Parna Di Batu Aji Kota Batam ). 1(1).

Nandiwardhana, B. G., Pratama, B. I., & Tamitiadini, D. (2019). Study of Communication Network Travel-Related eWOM on Instagram Social Media. Journal Pekommas, 4(1), 97–110. https://doi.org/10.30818/jpkm.2019.2040110

Nasrudin Yahya, A., & Maullana, I. (2022, June 3). Pernyataan Jokowi Terkait Wacana Perpanjangan Masa Jabatan Presiden. Penulis: Editor: Irfan Maullana. Kompas.Com. https://nasional.kompas.com/read/2022/03/06/08200511/3-pernyataan-jokowi-terkait-wacana-perpanjangan-masa-jabatan-presiden

P Borgatti, S., G Everett, M., & C Johnson, J. (2018). Analyzing Social Network. SAGE Publications Ltd.

Scott, J. (2012). What is social network analysis? Bloomsbury Academic.

Tabassum, S., Pereira, F. S. F., Fernandes, S., & Gama, J. (2018). Social network analysis: An overview. WIREs Data Mining and Knowledge Discovery, 8(5). https://doi.org/10.1002/widm.1256

Takhteyev, Y., Gruzd, A., & Wellman, B. (2012). Geography of Twitter networks. Social Networks, 34(1), 73–81. https://doi.org/10.1016/j.socnet.2011.05.006

Tomasoa, L., Iriani, A., & Sembiring, I. (2019). Ekstraksi Knowledge tentang Penyebaran #Ratnamiliksiapa pada Jejaring Sosial (Twitter) menggunakan Social Network Analysis (SNA). Jurnal Teknologi Informasi dan Ilmu Komputer, 6(6), 677–686. https://doi.org/10.25126/jtiik.2019661710

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2011). Election Forecasts With Twitter: How 140 Characters Reflect the Political Landscape. Social Science Computer Review, 29(4), 402–418. https://doi.org/10.1177/0894439310386557

Utami, S. R., Safitri, R. N., & Kuncoroyakti, Y. A. (2021). Analisis Jaringan dan Aktor #BatalkanOmnibusLaw di Media Sosial Twitter Menggunakan Social Network Analysis (SNA). 4(3), 135–148.

Weber, I., Garimella, V. R. K., & Teka, A. (2013). Political Hashtag Trends. In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps, S. Rüger, E. Agichtein, I. Segalovich, & E. Yilmaz (Eds.), Advances in Information Retrieval (Vol. 7814, pp. 857–860). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_102

Xu, W. W., Sang, Y., Blasiola, S., & Park, H. W. (2014). Predicting Opinion Leaders in Twitter Activism Networks: The Case of the Wisconsin Recall Election. American Behavioral Scientist, 58(10), 1278–1293. https://doi.org/10.1177/0002764214527091

Yaqub, U., Chun, S. A., Atluri, V., & Vaidya, J. (2017). Analysis of political discourse on twitter in the context of the 2016 US presidential elections. Government Information Quarterly, 34(4), 613–626. https://doi.org/10.1016/j.giq.2017.11.001

Zhang, J., & Luo, Y. (2017). Degree Centrality, Betweenness Centrality, and Closeness Centrality in Social Network. Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), 132, 300–303. https://doi.org/10.2991/msam-17.2017.68

Zweig, K. A. (2016). Graph Theory, Social Network Analysis, and Network Science. In K. A. Zweig, Network Analysis Literacy (pp. 23–55). Springer Vienna. https://doi.org/10.1007/978-3-7091-0741-6_2




DOI: https://doi.org/10.32509/wacana.v22i2.2976

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 Indexed by:

     

 Recommended Tools :

 

 

WACANA: Jurnal Ilmiah Ilmu Komunikasi

Fakultas Ilmu KomunikasiUniversitas Prof. Dr. Moestopo (Beragama)
Kampus I, Jl. Hang Lekir I/8 Jakarta Pusat, Indonesia 10270
WA: 085714422271 (Chat Only)

email: wacana@dsn.moestopo.ac.id

 

Creative Commons License

WACANA: Jurnal Ilmiah Ilmu Komunikasi Licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.